Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (S)-1,1-Dimethyl-*N*-[(S)-1-phenyl-3-(phenylsulfonyl)but-3-enyl]ethane-2-sulfinamide

#### Dan Zhan, Zuo-An Xiao,\* Hua-Jun Liu and Xiao-Peng Shi

Department of Chemistry and Biological Science, Xiangfan University, Xiang Fan 441053, People's Republic of China Correspondence e-mail: blueice8250@yahoo.com.cn

Received 20 September 2007; accepted 26 September 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean  $\sigma$ (C–C) = 0.007 Å; R factor = 0.064; wR factor = 0.160; data-to-parameter ratio = 18.3.

The title compound,  $C_{20}H_{25}NO_3S_2$ , was obtained by the reaction of (*S*)-2-methyl-*N*-[(*S*)-1-phenyl-3-(phenylthio)but-3-enyl]propane-2-sulfinamide with 3-chloroperoxybenzoic acid (mCPBA) in dichloromethane solution. The absolute configuration was assigned by reference to the unchanging chiral centre in the synthetic procedure. The dihedral angle between the two benzene rings is 73.3 (2)°. The molecular conformation is likely influenced in part by intramolecular C-H···O hydrogen bonds, while the crystal packing is stabilized by intermolecular N-H···O hydrogen bonds and C-H··· $\pi$  interactions.

### **Related literature**

For biological and pharmaceutical activities of sulfone derivatives, see: Reddy & Padmaja (1994); Tokio *et al.* (1993); Yasuo *et al.* (1993); Vedula *et al.* (2003). Many derivatives of these compounds have been prepared by: Carr *et al.* (1983); Xu *et al.* (2003). For reference structural data, see: Allen *et al.* (1987).



### **Experimental**

Crystal data  $C_{20}H_{25}NO_3S_2$   $M_r = 391.53$ Orthorhombic,  $P2_12_12_1$ 

a = 10.6163 (13) Åb = 10.9054 (13) Åc = 17.542 (2) Å  $V = 2030.9 (4) \text{ Å}^3$ Z = 4Mo  $K\alpha$  radiation

#### Data collection

Bruker SMART CCD diffractometer Absorption correction: none 12058 measured reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.064$  $wR(F^2) = 0.160$ S = 0.944417 reflections 241 parameters 1 restraint  $\mu = 0.28 \text{ mm}^{-1}$  T = 297 (2) K $0.20 \times 0.20 \times 0.20 \text{ mm}$ 

organic compounds

4417 independent reflections 2616 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.128$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), with 1895 Friedel pairs Flack parameter: 0.15 (13)

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the ring C11-C16.

| $D - H \cdot \cdot \cdot A$ | D-H     | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots \mathbf{A}$ |
|-----------------------------|---------|-------------------------|--------------|------------------------------------|
| C18-H18C···O3               | 0.96    | 2.45                    | 2.946 (6)    | 112                                |
| C10−H10···O2                | 0.98    | 2.38                    | 3.131 (5)    | 133                                |
| $N1 - H1 \cdots O1^{i}$     | 0.84(2) | 2.50 (2)                | 3.338 (4)    | 175 (4)                            |
| $C18-H18A\cdots Cg^{ii}$    | 0.96    | 2.75 (1)                | 3.700        | 172                                |
|                             | 1 . 3 . | a (11) 3                | 1            |                                    |

Symmetry codes: (i)  $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 2$ ; (ii)  $-x + \frac{3}{2}, -y + 2, z + \frac{1}{2}$ .

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2001).

The authors are grateful to the Science and Technology Research Programme of the Education Office of Hubei Province (grant No. D200625003) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2512).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2001). *SMART* (Version 5.628) and *SAINT* (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Carr, R. V. C., Williams, R. V. & Paquette, L. A. (1983). J. Org. Chem. 48, 1976–4986.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Reddy, D. B. & Padmaja, A. (1994). J. Indian Chem. Soc. 71, 259-262.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tokio, O., Katsutoshi, F. & Isamu, N. (1993). Jpn. Patent 9 359 017.
- Vedula, M. S., Pulipaka, A. B. & Venna, C. (2003). Eur. J. Med. Chem. 38, 811– 824.
- Xu, L., Cheng, J. & Trudell, M. L. (2003). J. Org. Chem. 68, 5388-5391.
- Yasuo, I., Kazunari, O. & Shigeyuki, I. (1993). J. Pestic. Sci. 18, 175–182.

Acta Cryst. (2007). E63, 04221 [doi:10.1107/S160053680704737X]

## (S)-1,1-Dimethyl-N-[(S)-1-phenyl-3-(phenylsulfonyl)but-3-enyl]ethane-2-sulfinamide

## D. Zhan, Z.-A. Xiao, H.-J. Liu and X.-P. Shi

### Comment

Sulphone derivatives are important compounds with versatile biological and pharmacological activities (Reddy & Padmaja, 1994; Tokio *et al.*, 1993; Yasuo *et al.*, 1993; Vedula *et al.*, 2003). In this paper, we report the crystal structure of the title compound (I) (Fig. 1).

In (I), all bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The molecules are stabilized by intra and intermolecular hydrogen bonds (Table 1). Further stability is provided by C–H··· $\pi$  hydrogen bonds stacking interactions [C18–H18A··· $Cg^{ii}$ =2.75 (1) Å; symmetry code: (ii) 3/2 – *x*, 2 – *y*, 1/2 + *z*]. *Cg* is the centroid defined by ring atoms C11–C16.

### Experimental

To a precooled solution of anhydrous (*S*)-2-methyl-*N*-((*S*)-1-phenyl-3-(phenylthio) but-3-enyl)propane-2-sulfinamide (196 mg, 0.5 mmol) in anhydrous  $CH_2Cl_2$  (5 ml) at 273 K, was added dropwise a solution of mCPBA (238 mg, 1.1 mmol) in  $CH_2Cl_2$  (5 ml). After stirring for 2 h, the reaction solution was washed with saturated aqueous NaHCO<sub>3</sub> (5 ml), brine (5 ml), dried over anhydrous MgSO<sub>4</sub>. After this solution was concentrated, the residue was purified by flash column chromatography to give the titled compound as a white solid with 51% yield. Colourless crystals suitable for X-ray structure analysis were grown from a mixture of dichloromethane and petroleum ether (v/v, 1:8).

### Refinement

All H atoms bonded to carbon atoms were located at the geometrical positions with C—H = 0.93 Å (aromatic and CH<sub>2</sub>=), 0.97 Å (methylene), 0.98 Å (methine) and  $U_{iso}(H) = 1.5U_{eq}(\text{methyl C})$  and  $1.2U_{eq}(\text{other C atoms})$ . H atom boned to N atom was located on the difference fourier map with constraint of N—H = 0.86 (2) Å and  $U_{iso}(H) = 1.2U_{eq}(N)$ .

#### **Figures**



Fig. 1. The molecular structure showing 50% probability displacement ellipsoids and the atom-numbering scheme.



Fig. 2. The crystal packing with hydrogen bonds drawn as dashed lines.

## (S)-1,1-Dimethyl-N-[(S)-1-phenyl-3-(phenylsulfonyl)but-3-enyl]ethane-2- sulfinamide

| Crystal data                                                   |                                              |
|----------------------------------------------------------------|----------------------------------------------|
| C <sub>20</sub> H <sub>25</sub> NO <sub>3</sub> S <sub>2</sub> | $F_{000} = 832$                              |
| $M_r = 391.53$                                                 | $D_{\rm x} = 1.281 {\rm Mg m}^{-3}$          |
| Orthorhombic, $P2_12_12_1$                                     | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: P 2ac 2ab                                         | Cell parameters from 2471 reflections        |
| a = 10.6163 (13)  Å                                            | $\theta = 2.2 - 24.7^{\circ}$                |
| <i>b</i> = 10.9054 (13) Å                                      | $\mu = 0.28 \text{ mm}^{-1}$                 |
| c = 17.542 (2)  Å                                              | T = 297 (2)  K                               |
| $V = 2030.9 (4) \text{ Å}^3$                                   | Block, colourless                            |
| Z = 4                                                          | $0.20\times0.20\times0.20~mm$                |

#### Data collection

| Bruker SMART CCD<br>diffractometer       | 2616 reflections with $I > 2\sigma(I)$ |
|------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube | $R_{\rm int} = 0.128$                  |
| Monochromator: graphite                  | $\theta_{\text{max}} = 27.0^{\circ}$   |
| T = 297(2)  K                            | $\theta_{\min} = 2.2^{\circ}$          |
| $\phi$ and $\omega$ scans                | $h = -13 \rightarrow 12$               |
| Absorption correction: none              | $k = -13 \rightarrow 13$               |
| 12058 measured reflections               | $l = -20 \rightarrow 22$               |
| 4417 independent reflections             |                                        |

## Refinement

| Refinement on $F^2$             | Hydrogen site location: inferred from neighbouring sites                                  |
|---------------------------------|-------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent and constrained refinement                    |
| $R[F^2 > 2\sigma(F^2)] = 0.064$ | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0643P)^{2}]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| $wR(F^2) = 0.160$               | $(\Delta/\sigma)_{\rm max} = 0.001$                                                       |
| <i>S</i> = 0.94                 | $\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$                                     |
| 4417 reflections                | $\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$                                |
| 241 parameters                  | Extinction correction: none                                                               |
| 1 restraint                     | Absolute structure: Flack (1983), with 1895 Friedel pairs                                 |
|                                 |                                                                                           |

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

|     | x          | У          | Ζ          | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|------------|------------|------------|---------------------------|
| C1  | 0.9030 (4) | 0.6805 (3) | 0.7868 (2) | 0.0437 (9)                |
| C2  | 0.8699 (4) | 0.5702 (4) | 0.7540 (3) | 0.0586 (12)               |
| H2  | 0.8782     | 0.4976     | 0.7814     | 0.070*                    |
| C3  | 0.8245 (5) | 0.5681 (5) | 0.6809 (3) | 0.0758 (15)               |
| Н3  | 0.8017     | 0.4938     | 0.6589     | 0.091*                    |
| C4  | 0.8125 (5) | 0.6738 (7) | 0.6398 (3) | 0.0829 (16)               |
| H4  | 0.7807     | 0.6716     | 0.5905     | 0.099*                    |
| C5  | 0.8472 (6) | 0.7822 (5) | 0.6716 (3) | 0.0810 (17)               |
| Н5  | 0.8394     | 0.8540     | 0.6433     | 0.097*                    |
| C6  | 0.8932 (5) | 0.7877 (4) | 0.7439 (3) | 0.0604 (13)               |
| Н6  | 0.9180     | 0.8625     | 0.7645     | 0.072*                    |
| C7  | 0.8233 (4) | 0.7089 (3) | 0.9361 (2) | 0.0462 (10)               |
| C8  | 0.7855 (5) | 0.6186 (4) | 0.9794 (3) | 0.0631 (13)               |
| H8A | 0.7142     | 0.6279     | 1.0097     | 0.076*                    |
| H8B | 0.8297     | 0.5450     | 0.9798     | 0.076*                    |
| C9  | 0.7585 (4) | 0.8328 (3) | 0.9309 (2) | 0.0474 (10)               |
| H9A | 0.6722     | 0.8248     | 0.9485     | 0.057*                    |
| H9B | 0.7563     | 0.8589     | 0.8780     | 0.057*                    |
| C10 | 0.8261 (4) | 0.9309 (3) | 0.9788 (2) | 0.0422 (9)                |
| H10 | 0.9155     | 0.9279     | 0.9651     | 0.051*                    |
| C11 | 0.7782 (4) | 1.0606 (3) | 0.9587 (2) | 0.0437 (9)                |
| C12 | 0.8640 (4) | 1.1477 (4) | 0.9383 (3) | 0.0566 (12)               |
| H12 | 0.9493     | 1.1285     | 0.9372     | 0.068*                    |
| C13 | 0.8241 (5) | 1.2649 (4) | 0.9192 (3) | 0.0687 (14)               |
| H13 | 0.8831     | 1.3241     | 0.9058     | 0.082*                    |
| C14 | 0.7019 (6) | 1.2932 (4) | 0.9199 (3) | 0.0654 (13)               |
| H14 | 0.6767     | 1.3719     | 0.9064     | 0.078*                    |
| C15 | 0.6126 (5) | 1.2080 (4) | 0.9404 (3) | 0.0634 (13)               |
| H15 | 0.5274     | 1.2280     | 0.9409     | 0.076*                    |
| C16 | 0.6531 (4) | 1.0904 (4) | 0.9605 (2) | 0.0551 (11)               |
|     |            |            |            |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H16  | 0.5943       | 1.0318       | 0.9753       | 0.066*      |
|------|--------------|--------------|--------------|-------------|
| N1   | 0.8170 (3)   | 0.9009 (3)   | 1.05940 (18) | 0.0425 (8)  |
| H1   | 0.741 (2)    | 0.904 (3)    | 1.071 (2)    | 0.051*      |
| 01   | 1.0118 (3)   | 0.5697 (3)   | 0.8986 (2)   | 0.0749 (10) |
| O2   | 1.0366 (3)   | 0.7933 (3)   | 0.8876 (2)   | 0.0715 (9)  |
| O3   | 0.9446 (4)   | 1.0631 (3)   | 1.1351 (2)   | 0.1109 (15) |
| S1   | 0.94171 (11) | 0.93283 (11) | 1.11069 (7)  | 0.0615 (3)  |
| S2   | 0.95831 (10) | 0.68636 (9)  | 0.87966 (6)  | 0.0514 (3)  |
| C17  | 0.9056 (4)   | 0.8466 (4)   | 1.1971 (2)   | 0.0801 (11) |
| C18  | 0.7938 (5)   | 0.9044 (5)   | 1.2358 (3)   | 0.0844 (17) |
| H18A | 0.7877       | 0.8744       | 1.2871       | 0.127*      |
| H18B | 0.7184       | 0.8838       | 1.2084       | 0.127*      |
| H18C | 0.8039       | 0.9918       | 1.2366       | 0.127*      |
| C20  | 1.0229 (5)   | 0.8582 (5)   | 1.2455 (3)   | 0.0893 (18) |
| H20A | 1.0362       | 0.9428       | 1.2583       | 0.134*      |
| H20B | 1.0942       | 0.8280       | 1.2175       | 0.134*      |
| H20C | 1.0127       | 0.8111       | 1.2913       | 0.134*      |
| C19  | 0.8826 (7)   | 0.7138 (4)   | 1.1777 (4)   | 0.107 (2)   |
| H19A | 0.8730       | 0.6674       | 1.2238       | 0.161*      |
| H19B | 0.9528       | 0.6825       | 1.1492       | 0.161*      |
| H19C | 0.8073       | 0.7069       | 1.1477       | 0.161*      |
|      |              |              |              |             |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.043 (2)   | 0.033 (2)   | 0.055 (3)   | 0.0036 (18)  | 0.0026 (18)  | -0.0003 (19) |
| C2  | 0.071 (3)   | 0.047 (3)   | 0.058 (3)   | 0.001 (2)    | 0.006 (2)    | -0.001 (2)   |
| C3  | 0.089 (4)   | 0.077 (4)   | 0.062 (3)   | -0.016 (3)   | 0.013 (3)    | -0.024 (3)   |
| C4  | 0.089 (4)   | 0.113 (5)   | 0.047 (3)   | 0.002 (4)    | 0.014 (3)    | 0.007 (3)    |
| C5  | 0.108 (5)   | 0.082 (4)   | 0.054 (3)   | 0.019 (4)    | 0.012 (3)    | 0.023 (3)    |
| C6  | 0.083 (4)   | 0.042 (2)   | 0.055 (3)   | 0.008 (2)    | 0.009 (3)    | 0.004 (2)    |
| C7  | 0.052 (3)   | 0.041 (2)   | 0.046 (2)   | -0.0037 (19) | -0.001 (2)   | -0.0018 (18) |
| C8  | 0.081 (3)   | 0.051 (3)   | 0.057 (3)   | -0.006 (2)   | 0.006 (3)    | -0.004 (2)   |
| C9  | 0.047 (2)   | 0.050 (2)   | 0.045 (2)   | 0.0050 (19)  | -0.0056 (19) | -0.0012 (19) |
| C10 | 0.040 (2)   | 0.045 (2)   | 0.041 (2)   | 0.0017 (19)  | 0.0014 (18)  | 0.0030 (19)  |
| C11 | 0.054 (3)   | 0.040 (2)   | 0.036 (2)   | 0.008 (2)    | -0.0014 (19) | 0.0009 (17)  |
| C12 | 0.058 (3)   | 0.050 (3)   | 0.062 (3)   | 0.004 (2)    | 0.002 (2)    | 0.005 (2)    |
| C13 | 0.082 (4)   | 0.043 (3)   | 0.082 (4)   | -0.006 (2)   | -0.010 (3)   | 0.007 (2)    |
| C14 | 0.097 (4)   | 0.044 (3)   | 0.056 (3)   | 0.011 (3)    | -0.004 (3)   | 0.000 (2)    |
| C15 | 0.066 (3)   | 0.070 (3)   | 0.055 (3)   | 0.025 (3)    | 0.005 (2)    | -0.003 (2)   |
| C16 | 0.061 (3)   | 0.053 (3)   | 0.051 (3)   | 0.005 (2)    | 0.007 (2)    | 0.008 (2)    |
| N1  | 0.0432 (19) | 0.0498 (19) | 0.0346 (18) | -0.0031 (16) | -0.0004 (16) | 0.0060 (14)  |
| 01  | 0.080 (2)   | 0.073 (2)   | 0.071 (2)   | 0.0374 (17)  | -0.0090 (18) | 0.0142 (18)  |
| O2  | 0.0460 (17) | 0.075 (2)   | 0.093 (3)   | -0.0138 (17) | 0.002 (2)    | -0.0218 (18) |
| O3  | 0.181 (4)   | 0.067 (2)   | 0.085 (3)   | -0.069 (3)   | -0.032 (3)   | 0.0103 (19)  |
| S1  | 0.0537 (7)  | 0.0810 (8)  | 0.0498 (7)  | -0.0187 (6)  | -0.0049 (6)  | 0.0108 (6)   |
| S2  | 0.0456 (6)  | 0.0504 (6)  | 0.0584 (7)  | 0.0097 (5)   | -0.0038 (6)  | -0.0031 (5)  |
| C17 | 0.082 (3)   | 0.094 (3)   | 0.054 (3)   | -0.006 (2)   | -0.005 (2)   | 0.0161 (19)  |

| C18          | 0.087(4)<br>0.072(4) | 0.117 (4) | 0.050(3)  | 0.023(3)  | 0.008(3)<br>-0.023(3) | 0.017 (3) |
|--------------|----------------------|-----------|-----------|-----------|-----------------------|-----------|
| C19          | 0.072(4)<br>0.182(7) | 0.152(3)  | 0.004(4)  | -0.005(4) | -0.029(5)             | 0.023(3)  |
| 019          | 0.162 (7)            | 0.032 (3) | 0.088 (3) | 0.005 (4) | 0.029 (3)             | 0.013 (3) |
| Geometric pa | arameters (Å, °)     |           |           |           |                       |           |
| C1—C2        |                      | 1.379 (6) | C12-      | —H12      | 0.9                   | 9300      |
| C1—C6        |                      | 1.395 (6) | C13-      | —C14      | 1.3                   | 334 (7)   |
| C1—S2        |                      | 1.732 (4) | C13-      | —Н13      | 0.9                   | 9300      |
| C2—C3        |                      | 1.371 (7) | C14       | —C15      | 1.3                   | 376 (7)   |
| С2—Н2        |                      | 0.9300    | C14       | —H14      | 0.9                   | 9300      |
| C3—C4        |                      | 1.365 (8) | C15-      | —C16      | 1.3                   | 397 (6)   |
| С3—Н3        |                      | 0.9300    | C15-      | —H15      | 0.9                   | 9300      |
| C4—C5        |                      | 1.357 (7) | C16       | —H16      | 0.9                   | 9300      |
| C4—H4        |                      | 0.9300    | N1-       | -S1       | 1.6                   | 538 (3)   |
| C5—C6        |                      | 1.361 (7) | N1-       | -H1       | 0.8                   | 340 (19)  |
| С5—Н5        |                      | 0.9300    | O1–       | S2        | 1.4                   | 433 (3)   |
| С6—Н6        |                      | 0.9300    | O2–       | S2        | 1.4                   | 439 (3)   |
| С7—С8        |                      | 1.307 (6) | O3–       | -S1       | 1.4                   | 484 (4)   |
| С7—С9        |                      | 1.519 (5) | S1—       | -C17      | 1.8                   | 324 (4)   |
| C7—S2        |                      | 1.759 (4) | C17-      | —C18      | 1.5                   | 506 (6)   |
| C8—H8A       |                      | 0.9300    | C17-      | —C19      | 1.5                   | 508 (6)   |
| C8—H8B       |                      | 0.9300    | C17-      | —C20      | 1.5                   | 513 (6)   |
| C9—C10       |                      | 1.538 (5) | C18-      | —H18A     | 0.9                   | 9600      |
| С9—Н9А       |                      | 0.9700    | C18-      | —H18B     | 0.9                   | 9600      |
| С9—Н9В       |                      | 0.9700    | C18-      | —H18C     | 0.9                   | 9600      |
| C10—N1       |                      | 1.455 (5) | C20       | —H20A     | 0.9                   | 9600      |
| C10-C11      |                      | 1.543 (5) | C20       | —H20B     | 0.9                   | 9600      |
| C10—H10      |                      | 0.9800    | C20-      | —H20C     | 0.9                   | 9600      |
| C11—C12      |                      | 1.364 (5) | C19-      | —H19A     | 0.9                   | 9600      |
| C11—C16      |                      | 1.368 (6) | C19-      | —H19B     | 0.9                   | 9600      |
| C12—C13      |                      | 1.388 (6) | C19-      | —Н19С     | 0.9                   | 9600      |
| C2—C1—C6     |                      | 119.1 (4) | C13-      |           | 12                    | 1.1 (4)   |
| C2-C1-S2     |                      | 120.7 (3) | C13-      |           | 11                    | 9.4       |
| C6—C1—S2     |                      | 120.2 (3) | C15-      |           | 11                    | 9.4       |
| C3—C2—C1     |                      | 119.6 (4) | C14       |           | 11                    | 8.2 (4)   |
| С3—С2—Н2     |                      | 120.2     | C14       | —С15—Н15  | 12                    | 0.9       |
| C1—C2—H2     |                      | 120.2     | C16       | —С15—Н15  | 12                    | 0.9       |
| C4—C3—C2     |                      | 120.9 (5) | C11-      |           | 12                    | 0.8 (4)   |
| С4—С3—Н3     |                      | 119.6     | C11-      |           | 11                    | 9.6       |
| С2—С3—Н3     |                      | 119.6     | C15-      |           | 11                    | 9.6       |
| C5—C4—C3     |                      | 119.6 (5) | C10-      | —N1—S1    | 11                    | 5.6 (3)   |
| С5—С4—Н4     |                      | 120.2     | C10-      | —N1—H1    | 10                    | 8 (3)     |
| C3—C4—H4     |                      | 120.2     | S1—       | -N1—H1    | 12                    | 9 (3)     |
| C4—C5—C6     |                      | 121.2 (5) | O3–       |           | 11                    | 2.3 (2)   |
| C4—C5—H5     |                      | 119.4     | O3–       | -S1-C17   | 10                    | 4.9 (2)   |
| С6—С5—Н5     |                      | 119.4     | N1-       | -S1-C17   | 10                    | 0.20 (18) |
| C5-C6-C1     |                      | 119.6 (4) | 01–       |           | 11                    | 7.9 (2)   |
| С5—С6—Н6     |                      | 120.2     | 01–       |           | 10                    | 8.7 (2)   |

| С1—С6—Н6        | 120.2      | O2—S2—C1        | 108.5 (2)   |
|-----------------|------------|-----------------|-------------|
| C8—C7—C9        | 124.5 (4)  | O1—S2—C7        | 108.5 (2)   |
| C8—C7—S2        | 118.2 (3)  | O2—S2—C7        | 107.59 (19) |
| C9—C7—S2        | 117.4 (3)  | C1—S2—C7        | 104.95 (19) |
| С7—С8—Н8А       | 120.0      | C18—C17—C19     | 112.1 (5)   |
| С7—С8—Н8В       | 120.0      | C18—C17—C20     | 111.1 (4)   |
| H8A—C8—H8B      | 120.0      | C19—C17—C20     | 109.9 (4)   |
| C7—C9—C10       | 112.0 (3)  | C18—C17—S1      | 108.9 (3)   |
| С7—С9—Н9А       | 109.2      | C19—C17—S1      | 110.0 (4)   |
| С10—С9—Н9А      | 109.2      | C20-C17-S1      | 104.5 (3)   |
| С7—С9—Н9В       | 109.2      | C17—C18—H18A    | 109.5       |
| С10—С9—Н9В      | 109.2      | C17—C18—H18B    | 109.5       |
| Н9А—С9—Н9В      | 107.9      | H18A—C18—H18B   | 109.5       |
| N1-C10-C9       | 110.1 (3)  | C17—C18—H18C    | 109.5       |
| N1-C10-C11      | 114.0 (3)  | H18A—C18—H18C   | 109.5       |
| C9—C10—C11      | 111.0 (3)  | H18B—C18—H18C   | 109.5       |
| N1-C10-H10      | 107.1      | С17—С20—Н20А    | 109.5       |
| С9—С10—Н10      | 107.1      | C17—C20—H20B    | 109.5       |
| C11—C10—H10     | 107.1      | H20A—C20—H20B   | 109.5       |
| C12—C11—C16     | 119.2 (4)  | С17—С20—Н20С    | 109.5       |
| C12—C11—C10     | 118.5 (4)  | H20A—C20—H20C   | 109.5       |
| C16—C11—C10     | 122.2 (4)  | H20B-C20-H20C   | 109.5       |
| C11—C12—C13     | 120.1 (4)  | С17—С19—Н19А    | 109.5       |
| C11—C12—H12     | 119.9      | С17—С19—Н19В    | 109.5       |
| C13—C12—H12     | 119.9      | H19A—C19—H19B   | 109.5       |
| C14—C13—C12     | 120.5 (5)  | С17—С19—Н19С    | 109.5       |
| C14—C13—H13     | 119.8      | H19A—C19—H19C   | 109.5       |
| С12—С13—Н13     | 119.8      | H19B—C19—H19C   | 109.5       |
| C6—C1—C2—C3     | -1.9 (6)   | C14—C15—C16—C11 | -1.0 (7)    |
| S2—C1—C2—C3     | 179.0 (4)  | C9—C10—N1—S1    | 143.0 (3)   |
| C1—C2—C3—C4     | 0.4 (8)    | C11-C10-N1-S1   | -91.5 (4)   |
| C2—C3—C4—C5     | 0.7 (8)    | C10—N1—S1—O3    | 83.1 (3)    |
| C3—C4—C5—C6     | -0.4 (9)   | C10-N1-S1-C17   | -166.0 (3)  |
| C4—C5—C6—C1     | -1.1 (8)   | C2—C1—S2—O1     | 24.7 (4)    |
| C2—C1—C6—C5     | 2.3 (7)    | C6—C1—S2—O1     | -154.4 (3)  |
| S2—C1—C6—C5     | -178.7 (4) | C2—C1—S2—O2     | 154.0 (3)   |
| C8—C7—C9—C10    | 100.5 (5)  | C6—C1—S2—O2     | -25.0 (4)   |
| S2—C7—C9—C10    | -79.7 (4)  | C2—C1—S2—C7     | -91.2 (4)   |
| C7—C9—C10—N1    | -65.8 (4)  | C6—C1—S2—C7     | 89.8 (4)    |
| C7—C9—C10—C11   | 167.1 (3)  | C8—C7—S2—O1     | -6.0 (4)    |
| N1-C10-C11-C12  | 109.1 (4)  | C9—C7—S2—O1     | 174.2 (3)   |
| C9—C10—C11—C12  | -125.9 (4) | C8—C7—S2—O2     | -134.6 (4)  |
| N1-C10-C11-C16  | -71.2 (5)  | C9—C7—S2—O2     | 45.6 (3)    |
| C9—C10—C11—C16  | 53.8 (5)   | C8—C7—S2—C1     | 110.0 (4)   |
| C16—C11—C12—C13 | -0.4 (6)   | C9—C7—S2—C1     | -69.8 (3)   |
| C10—C11—C12—C13 | 179.4 (4)  | O3—S1—C17—C18   | 49.1 (4)    |
| C11—C12—C13—C14 | -0.6 (8)   | N1—S1—C17—C18   | -67.4 (4)   |
| C12—C13—C14—C15 | 0.8 (8)    | O3—S1—C17—C19   | 172.3 (4)   |
| C13-C14-C15-C16 | 0.0 (7)    | N1—S1—C17—C19   | 55.8 (4)    |

| C12-C11-C16-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2 (6)                      | O3—S1—C17—C20 |              | -69.7 (4) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------|--------------|-----------|
| C10-C11-C16-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -178.6 (4)                   | N1—S1—C17—C20 |              | 173.7 (3) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |               |              |           |
| Hydrogen-bond geometry (Å, °)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |               |              |           |
| D—H···A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>D</i> —Н                  | $H \cdots A$  | $D \cdots A$ | D—H···A   |
| C18—H18C…O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.96                         | 2.45          | 2.946 (6)    | 112       |
| C10—H10····O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.98                         | 2.38          | 3.131 (5)    | 133       |
| N1—H1···O1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.84 (2)                     | 2.50 (2)      | 3.338 (4)    | 175 (4)   |
| C18—H18A…Cg <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.96                         | 2.75 (1)      | 3.700        | 172       |
| Symmetry codes: (i) $x-1/2$ , $-y+3/2$ , $-z+3/2$ , $-z+3/$ | +2; (ii) -x+3/2, -y+2, z+1/2 | 2.            |              |           |





